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ON THE POWER FUNCTIONS OF TEST STATISTICS -,

IN ORDER RESTRICTED INFERENCE

Hari Mukerjee, Tim Robertson, and F. T. Wright "

SUMMARY

--We study the power functions of both the likelihood ratio and con-

trast statistics for detecting a totally ordered trend in a collection of

means of normal populations. Monotonicity properties are found and both

radial limits and limits along lines parallel to the cone of points satis-

fying the trend are examined. An optimal contrast test for testing a trend

as a null hypothesis is derived.
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INTRODUCTION. We consider the powers of statistical tests for detecting

a trend in a collection of population parameters. The statistical litera-

ture contains a number of such tests and a detailed summary of this research

up to about 1971 is given in Barlow et al. (1972). More recent summaries

are given in Bartholomew (1983), Lee (1983) and Robertson (1984). We

* ~~restrict our attention to the case in which the parameters, '2**''

are the means of normal populations and the trend restriction requires them

to be totally ordered. To be specific we consider the trend H 1: P1 I' L

Pk One approach to detecting such a trend is to test homogeneity,

H 0: 41 P2 = = k' versus H 1-HO, i.e., H1I holds with kl < "k

- (cf. Bartholomew (1959 a,b; 1961)). Even in the case of normal means the

results concerning the powers of these restricted tests are very exiguous

and consist primarily of comparisons with the powers of other tests, such

as the unrestricted tests of H versus H;: pi 4 for some i j.

In fact, as far as we can determine, the first mention of the fact that

Bartholomew's tests are unbiased occurs in Robertson and Wright (1982).

The biases of other restricted tests are examined in Dykstra and Robertson

(1983).

Assuming independent random samples from normal populations,

Bartholomew (1959 a,b; 1961) studied the likelihood ratio tests (LRTs)

for H0  versus H -H assuming in one case that the population variances
0~ 1 0

are known and in the other that they are unknown but equal (partially

ordered trends were also considered). We focus attention on the case of

known variances. Results concerning the unknown variances case follow by

d conditioning arguments in the last section. Implementation of Bartholomew's

test procedures can be difficult for k > 5 if the so-called weights are
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not equal. (For the known variances case, the weights are the precisions,

ni/2 , of the sample means as estimates of the population means.) This

difficulty is mainly due to the fact that the level probabilities involved

in the null hypothesis distribution of the test statistic are extremely

difficult to compute in such cases. This theory is discussed at length in

Chapter 3 of Barlow et al. (1972). Robertson and Wright (1983) proposed an

approximation for the level probabilities for the case of total order and

Pillers et al. (1984) gives a computer routine for implementing this approx-

imation.

Partly because of the difficulty involved in applying Bartholomew's

procedures, several researchers, including Abelson and Tukey (1963) and

Schaafsma and Smid (1966), considered tests based upon contrasts (cf. Sec-

tion 4.2 of Barlow et al. (1972)). Denoting the sample means by X.,

1 : i ! k, these contrast tests are based upon statistics of the form
Tc - i1l ciX i where c = (c1 ,c2,''',ck) is a vector of predeterminedk

constants (Zk= ci = 0). One attraction of these constrasts is the fact

that their distribution at any point . , E Rk is normal.

With pO,v E Rk fixed i i = 0), the uniformly most powerful (UMP)

test of HO" p= 0 versus HI: p E [ 0+ by; b > 0 rejects H for

large values of T (use the Neyman-Pearson Theorem and note that this
V

test is UMP for fixed b > 0). Since this test does not depend on .IoEHo it

is not surprising that contrast tests are very powerful in some subregion

of the alternative. However, even for moderate k, there are other sub-

regions of the alternative where the power of the contrast test does not

compare favorably with the power of Bartholomew's LRT. While the LRT is

not most powerful at any particular point, it does maintain a more

-X
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* uniformly reasonable power over all of H. One explanation of this fact

is given in Theorem 4.3 of Barlow et al. (1972), which can be interpreted

* to say that the LRT is based on an "adaptive" contrast statistic. In other

* words, the parameters are estimated from the data and then the contrast

coefficients are chosen so that the test has a relatively high power at the

estimated point.

In the references cited earlier, Abelson and Tukey (1963) and

Schaafsma and Smid (1966) derived optimal contrast tests. In the former

* they obtained the contrast coefficients which maximize the minimum power

over all points equidistant from H 0  and in the latter those that minimize

- the maximum loss of power as compared to the most powerful test in a

restricted class of procedures. The powers of these optimal contrast tests

* are compared with that of the LRT in Section 4.2 of Barlow et al. (1972).

Their conclusion is that, while it is difficult to improve on the LRT, for

a total order and small k these contrast tests provide viable alterna-

* tives to the LRT.

In the above approach to detecting a trend the hypothesis of homo-

geneity is a "dummy" hypothesis. Control of the a level provides pro-

tection against confirming the trend when it is not present. Robertson and

* Wegman (1978) and Robertson (1978) studied LR procedures for testing a

trend as a null hypothesis. The a.-level of these tests controls the

probability of denying the trend when it is present. The null hypothesis

distributions of the LRT statistics involve the same level probabilities

that complicate the use of Bartholomew's test. In Section 4 we derive an

optimal contrast test for H1 versus H 2: Pi >1i+l for some i.



4

In Section 3, we study the power functions of the LRTs for testing H0

versus H -H0  and for H1 versus H2 . The power functions for the latter

tests are more complicated and, in a sense, more interesting. Some prelim-

inary results for studying the powers of the LRTs are developed in Section

2. The competing contrast tests are discussed in Section 4.

Throughout this paper XI ,x2 ,...,xk denote the sample means of inde-

pendent random samples with . n ai/ni)' n. the size of the ith

sample, and a the variance of the ith  population. Assume that the

variances are known and set wi = ni/a for i = 1,2,...,k. Let H0 and

H1  denote the hypotheses specified earlier as well as the corresponding sub-

sets in Rk . The set, Ho, is a subspace and H1  is a closed, convex

cone. Let (,-)W denote the inner product on Rk defined by

(xiy) = k wixiYi and let I.I1W denote the corresponding norm.

Bartholomew's test of H0  versus H1 -H0  rejects H0  for large values of

(1.1) Tol -2 ln A = k wii_2 = -ekW

where A denotes the likelihood ratio, k = w 7./E k e is a

k-dimensional vector of ones and P = (Vl' 2""'9k) minimizes

k 2Z. wi(gi-Xi) 2  subject to g E H. In other words, p is the projection

of X = (Xl,X 2,...,Xk) onto H1 with respect to the distance d(x,y)

= ;x>-yIW . We will also denote this projection by Ew(XI Hl). With the
closed, convex cone H l fx: E= l xiw. = 0] denoted by C01 , Theorem 1.5

1 ~il 11i 1

of Barlow et al. (1972) can be used to show that EW(XI COl) = EW(XI Hl)-O

and so Tol0 = UEw(XCol)112 . Therefore, an acceptance region for T0 1 can

be written as (x E Rkk :IIEw(x Co2)Ir. t] for some t > 0.

The LRT of H1  versus H2  rejects for large values of

I

., , ", "/o "e.; "'". .. .. ' .. . . . """ " " " " " ""*** "
"
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(1.2) Tl2 :-2lnA:Zi wi(Xi- 1i  IlXEw(XI Hi)Lf.

If Cl2  denotes the dual of Hl  (also called the polar or conjugate of

H), which is a closed convex cone whose definition is given in the next

section, then Theorem 1.5 of Barlow et al. (1972) shows that EW(xj C12 )

x- Ew(xI Hi), and so T12 = JEw(Ki C12)11. The acceptance regions for

T are of the form tx E Rk [iE(XI Cl2)f t] with t > 0.
12 W 1

In Section 3 we consider the question of unbiasedness for Tol and

Tl as well as the radial behavior of their power functions, that is,

their behavior on the sets i6ij; 6 0 0] for various p. The behavior of

these power functions in other directions is also discussed. Robertson and

Wright (1982) considered the relation on R k  x <_ y provided y-x E H.

They showed that T and its power function are isotone, and T12 and its
01

power function are antitone with respect to j.. This implies that if

E Hl, then the power of T01 (T12 ) is nondecreasing (nonincreasing) in

6 on (64 : -- < 6 < -). Their results concerning the stronger relation

<< show that the power of T01  is monotone in a larger set of directions,

but these techniques do not apply to T1 2 because it is not antitone with1.'

respect to <<. However, because of the strong similarities in the accept-

ance regions for the tests T01  and T1 2, one might conjecture that T12

is also monotone in this larger set of directions. Using the geometric

arguments of Section 2, this is shown to be the case.

-'-p .. . . .. . . - -- ... . ,... -... ,. , ,- .,. - ,. , . . ,
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2. SOME PROBABILITY INEQUALITIES. The probability inequalities derived

in this section will be used in the discussion of the montonicity of the

power functions of T 01  and T 12. Using the techniques in Bartholomew

(1961), one can, at least in principle, obtain analytic expressions for

these power functions in terms of several multiple integrals, but, as func-

tions of the distance of a mean vector from H 0  and its direction, they

are extremely intractable even in the case of equal weights and k = 3.

(See Section 3 for further discussion.) We have resorted to geometric

arguments involving integrals of symmetric unimodal densities over convex

sets that have certain symmetry properties. In a sense, the results

obtained are generalizations of Anderson's (1955) work on similar integrals

over symmetric (about the origin) convex sets, but in the present work, the

statistics are projections on closed, convex cones which are not subspaces,

and thus the sets involved have only partial symmetry.

The basic idea is the following. Let P H* denote the n(P,I)
k k'

probability distribution on Rk for each '. E Rk, and note that

P P (A) = P 0(A-p') for all measurable A c Rk If A is the acceptance

region for one of the tests considered here, then A is closed and convex.

If S 6Ais the subspace generated by a mean vector p.' and S~ is the

* korthogonal complement of S in R . then, for some directions of h.

it is possible to decompose A into disjoint subsets A* and A', with

A' a closed, convex set symmetric about S' and A' on one side of S'

eThis will enable us to prove the monotonicity of P 6P(A) = P 0(A-65') in

6 0 for such directions.

Because we anticipate the application of the results of this section

to more general types of cones than those considered in this paper, and
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because we believe the results concerning projections on closed, convex

cones in a real Hilbert space are of interest in themselves, we consider a

more general framework than is needed for this paper.

Let H denote a real Hilbert space with inner product (.,.) and

norm ijj. If C is a closed, convex cone in H and x E H, then E(xj C)

will denote the unique projection of x onto C, i.e., E(xI C) is the

unique element of C which minimizes f1x-y[J as y ranges over C. Theorem

7.8 of Barlow et al. (1972) characterizes E(xl C) as follows:

(2.1) E(xl C) E C, (x-E(xl C), E(xI C)) = 0, and (x-E(xl C),y) 0

for all y E C.

It follows from (2.1) that E(axj C) = aE(xI C) for a z 0 and x E H,

and that

(2.2) (x,E(xl C)) = (E(xj C),E(xI C)) = 4E(x[ C)Ij2 for x E H.

The dual of C, which is denoted by C*, is defined by

C* = 'x E H: (x,y) s 0 for all y E C]. Clearly, C* is a closed, convex

cone and using the definition of C*, (2.1), and (2.2), we see that

(2.3) E(x C*) = x- E(xI C) and JIE(x C*). 2 = Ixl- [E(x I C) 12

In the Appendix it is shown that

(2.4) (C*)* = C.

Throughout this section C will denote a closed, convex cone in H,

C* its dual, and A the closed set fx E H: lJE(xI c)I tj for some t > 0.

For i E H let C. (b : b 0 0, S (b t: -< b < :), and let S' be

.-4,
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the orthogonal complement of S

We repeat for the reader's convenience a result from Robertson and

Wegman (1978) which will be used several times in the sequel.

Lemma 2.1. If x E C, then for any y E H, 4x+y-E(x+yj C)I

y- E(yj C)IJ or, equivalently, J1E(x+y C*) < jE(yI C*)II.

Next, we state several lemmas which are proved in the Appendix. Let

-D = [-x: x E D3.

Lemma 2.2. Suppose p E C U (-C*). For x E H and 0 b ! 2,

(2.5) jIE(x- bE(x-pO I C ) C)jj s jIE(xj C)Ii for all wo E SL.

So, if (pp O ) = 0 and y E A-pO, then y-bE(yj C) E A-P0  for 0 c b <2.

Lemma 2.3. For x,y E H,

lIE(x+y I C)IJ - IIE(x I C)+E(y I C)II ' IIE(x c)IJ + [JE(yI C)II.

Using Lemma 2.3, we see that A is convex.

Lemma 2.4. Let S be a closed subspace of H.

(a) If S c C, then (x-E(xI C),v) = 0 and E(x-vI C) = E(xI C)- v for

all x E H and v E S.

(b) If S c C, then E(E(xI C)l S) - E(xI S) for all x E H.

(c) If S c C, then E(x I C)- E(xI S) = E(x I C n s') for all x E H.

(d) If C c S, then E(E(x1 S)I C) = E(xI C) for all x E H.

The next result identifies the portion of A that is symmetric about
• A+s.k Define A to be x EA: E(xI s) = bu. for some b m0] and B to

I- .
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be (x- bE(xj S ) x E A+, 0 ! b r 2].

Theorem 2.5. If p E C U (-C*) and "O is any vector in H with

( L, .O) = 0, then B-40 c A-40 , B-po is symmetric about S', i.e.,
p

x E B-p0  implies x- 2E(x[ S) E B-po, and B-pO is closed and convex.

Proof. First assume the theorem is true with 40 = 0. Then the first

and the last conclusions follow immediately for arbitrary 40 E H. The

second conclusion follows when (p, 0) = 0 by noting that, when B is

symmetric about S1, x E B-p0  implies x+p0 - 2E(x+p01 S )
4P

= X+po-2E(x! S ) E B, so that x- 2E(xj S) E B-p0 . Thus it is suffi, t

to prove the theorem for p0 = 0.

For x E A, E(x C ) E(xj S ) and so B cA by Lemma 2.2. If

x E B, then there exists y E A+  and b E [0,2] with x = y- bE(y[ S ).

Thus by the linearity of E(. I S ),

x- 2E(xIS ) = y- bE(y[S)- 2(l-b)E(yIS ) y- (2-b)E(yjS ) E B.

Next, we show that B is closed. Since S is 1-dimensional it is closed,

and so is S'. Because A+ is the intersection of the closed, convex sets
p

A and (x E H: E(xI s) = bp, b z 0], it is closed and convex also. Now

A = (x- bE(xi S ): x E A+ , 0 g b r 1), and if we define

A- = fx- bE(xj S ): x E A+ , 1 g b < 23, then A- is the reflection of A+

across S'. It is then easily verified that A is closed and convex.

Hence, B = A+ U A- is closed.

Since A+  and A are both convex, to show that B is convex, we

need only show that ax+ (l-a)y E B for 0 < a < 1, x E A fl (A-)c and

y E A- fl (A+)c. Now y- 2E(yj S ) E B and E(y- 2E(yjS )IS )-E~yS
PP PL P

_-' ........................
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implies that y- 2E(y! S ) E A+ . Thus, v ax+ (l-a)(y- 2E(yI S )) E A+

and v-bE(v[ S ) E B for 0 < b < 2. Now, E(x S ) = c;, and E(y S

c with cx >0 and cy < 0. Then E(vS S) S (acx - (l-a)c ). and

v- b(ac x - (l-a)c y)" E B for all 0 b < 2. But 0 < -2(l-a)cy

< 2(ac x - (l-a)c y). Thus

ax+ (l-a)y = v+ 2(1-a)cyp = v-[(-2(l-a)cy)/(acx-(l-a)cy)]E(vlS )E B,

and the proof is completed.

For the remainder of this section, we take H to be Rk and at first

consider the usual inner product. For p E Rk we let P denote the

n(i,I) probability distribution on Rk.

Theorem 2.6. If u E Rk and E is a closed, convex set in Rk which

is symmetric about S±, then P (E) is nonincreasing in 6 for 6 0.

k
Proof. We may assume that p 0 and = 1. Introduce in R an

orthonormal coordinate system, so that if x E Rk has coordinates

(xl,x2,...,Xk), then E(xj S) (xl,O,...,O). Hence, for any measurable

kDc Rk,

k
(D) ff f1 CP(x.)dx.)CP(x )dx SgD(xl)cp(xl)dxl

D(xx)ii=x1 ) 11111'

where D(xI) = f(x2,..,Xk) (xl1,x2,.. ,xk) E D) is the x1-section of D

and cp is the standard normal density. From the symmetry assumption on

E, E(-xl) E(x1 ), and because E is convex and symmetric, E(axl)

E(a'x I) for 0 < a' < a. So, gE is symmetric, nonnegative, and non-

decreasing on (--,0], and

dP 1*. 9 .* . /



P 6P (E) = Po(E-61L) = fgE(xl)cp(xl-6)dx1 = f'gE(xl+6)p(xl)dxl .

Suppose 0 6 g 6'. Let

I = Po(E-j) - Po(E-6') = [gE(xl+6) - gE(xl+6' )Icp(xl)dx I.

Let c = (6+6')/2 and b = (6'-6)/2 and note that c a b z 0. Hence,

I = S[gE(xl+c-b) - gE(x,+c+b)]cp(xl)dx1

= f[gE(Y-b)- gE(y+b)]T(y-c)dy = Sh(y)cp(y-c)dy,

where h(y) = gE(Y-b)- gE(y+b) is antisymmetric and h(y) zt 0 for y z 0.

Thus,

I h(y)[cp(y-c)- p(y+c)]dy.
0

For y ' 0 and c z 0, (y+c)2 Z (y-c) 2 and so I z 0. The proof is

completed.

Remark. Replacing p by -p in Theorem 2.6, we see that P_,, (E)

is nonincreasing in 6 > 0 also.

Theorem 2.7. If E ER k and D is a measurable subset of Rk with

E(x[ C) : 0 for each x E D, then P (D) is nonincreasing in 6 - 0.

Proof. We assume i 0 and Ih.41 = 1. We use the coordinate system

and notation used in the proof of Theorem 2.6.

Because of the hypothesis on D, D(xl) = and gD(xl) = 0 for all

x > 0. If 0 < 6 < 6' , then Po(D-) -Po(D-6'p)

- ,,) gD(xl)[cP(xl-6)- (xl-6')]dxI. Since gD(xl) t 0 and

'V
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.O(Xl-6) Z: cp(xl-6') for x I 1 0 and 0 ! 6 : 6', the last integral is

nonnegative. The proof is completed.

If D and D' are subsets of a linear space, we write D 0 D' to

denote the direct sum, i.e., D G D' = £x+y: x E D, y E D'].

Theorem 2.8. Let k E R 4E S" and let S be a subspace in Rk

containing C. If E (C e S') U (-C*), then P 6P(A-po) is nonincreasing

in 6 0, and, if p E C*, then P6P(A-io) is nondecreasing in 6 0.

Proof. First, consider the case p E C U (-C*). Combining Theorems

2.5 and 2.6, we see that PP(B-pO ) is nonincreasing in 6 0 0. If

x E A f BC-_o then E(xI C ) 0, and, applying Theorem 2.7,

P (AnBC-4 0 ) is nonincreasing in 6 ; 0. With p E C U (-C*) and

V E S', P6 ( +V)(A-o) P4(A-po-6v). The first conclusion will be estab-

lished by showing A-6v = A. Now, A-6v = Ex-6v: x E A)

= tx-6v: IE(xI C)i1 < t] : (y: 1JE(y+6vI C)I[ < t). Applying part (d) of

" Lemma 2.4, the linearity of E(-I S), and the fact that E(6v1 S) 0, we

see that

E(y+6v C) = E(E(y+6vI S)I C) : E(E(yI S)I C) = E(yj C).

So A-6v = (y: 'E(y C) < tJ = A.

For the second conclusion, we assume that A E C* and 0 r6 r '6'.

Since (6'-6E - C*, by Lemma 2.1, lE(x+6'pI C)[j r jE(x+6v4 C)2. Thus

x+, E A implies that x+6'± EA or A+6' czA-W6,, so that

A a-o- 61p c A-40o- 6p. Hence, P6, (A-po) : Po(A-o-6'p) Po(A-6o-6)

= P (A-"o). The proof is completed.

.6
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Theorem 2.8 will be used to study the monotonicity of the power func-

tions of T01  and T12 in the case of equal weights, i.e., w1 = w2

wk. The analogous results for unequal weights will be established

next. Let w. > 0 for i = 1,2,.-.,k and let W be the kxk diagonal
1

matrix with Wii = wi, 1 = l,.-,k. Consider the inner product, ('")W'

on,,Rkand norm, LilW' onR which were defined in the Introduction. For C

a closed, convex cone in Rk (closed in the topology induced by .

let C*W  denote the dual of C and EW(-I C) denote the projection onto

C with respect to for S a subspace in Rk, let S"W denote

its orthogonal complement with respect to ' for fixed t > 0, set

AW = (x E Rk: IEw(x[ C)W _- t]; and for . E Rk, let PW denote the

normal probability distribution on Rk with mean I. and covariance matrix

W- . If W = I, then we will omit the subscript or superscript, except

for emphasis.

We now establish two identities involving dual cones and projections

with respect to ( and ('")W" They can easily be generalized to

the case in which W is a positive definite matrix or an invertible posi-

tive operator on a real Hilbert space. In either case, the inner product

(x,Y)w = (x,WY)i.

Let W1/2 denote the unique positive square root of W and let 0 be

any kxk orthogonal matrix. The matrix 0 plays no essential role, how-

ever, a judicious choice, such as a generalized Helmert transformation in

the case of a totally ordered trend, may help identify the transformed

parameters and visualize the transformed cone. Let F = OW1/ 2  and note

k
that F is invertible. For x,y E R , it is easily verified that

Fx,Fy) , x w  Fx, and (x,Y)w \w[iyW)  (Fx,Fy)/QjI y

Ii l"

0% . . . . . . .
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with Fx 0 and Fy 0 in the latter case. Since F is linear and

invertible FC is also a closed, convex cone and C = F -(FC). The fol-

lowing lemma is proved in the Appendix.

Lemma 2.9. FC*W = (FC)*I and E(FxI FC) : FEw(xi C) for all x E Rk

We now prove the following generalization of Theorem 2.8:

Theorem 2.10. Let p E Rk, p0 E S and let S be a subspace in

Rk containing C. If i E (C G S'W) U (-C*W), then Pw(Aw-o) is non-

increasing in 6 t 0, and, if u E C* W, then Pw(Aw-o) is nondecreas-

ing in 6 m 0.

Proof. If X is distributed as P then Y = FX has a 71(Fp,I)
I.,W

distribution. So P6  w(AwO) = P6FI(F(Aw-vo)) = P6FI(FAw-Fpio), and

we will apply Theorem 2.8 to the latter term with p, 405 S, C, and A

replaced by Fp, FpO, FS, FC, and FAW, respectively. Note that

(F4,F"0) = (,O)W = 0, FC c FS, (FC (D (FS)') U (-(FC)* )

= F[(C G §W) U (-CW)] and so E (C ( S W ) U (-C*W) implies

Fp E (FC 0 (FS) "I) U (-(FC)*I). Now, using Lemma 2.9,

FAW : (Fx: JEw(x I C)% : t) : fFx: [FEw(x I C) I < t)

: CFx: IE(Fx[ FC) tS

Thus, by Theorem 2.8, P w(Aw-.o) = P6Fp,I(FA-FIo) is nonincreasing

in 6 0.

The proof of the generalization of the second conclusion of Theorem

2.8, which is similar, is omitted.

-...........................................
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3. LIKELIHOOD RATIO TEST. We now apply the results in Section 2 to study

the power functions of the LRTs of H0  versus H1-H0 and of H1 versus

H2. The power function of T is examined first. With t > 0 fixed,
2* 01

we denote this power function by 0(

If k = 2, then the testing situation is the classical one-sided test

of I = 2 versus 'L < 2. In this case, rejecting uI = 2 for large

values of T01  is equivalent to rejecting for large values of X2 -XI.

It is well known that such a test is UMP and its power function is increas-

ing in 2 (cf. Problem 3.2 on p. 117, Lehmann (1959)). The complexity

of the situation increases rapidly in k. For k = 3 and w1 = w2 
= w3,

Bartholomew (1961) derived an expression for the power function of T01.

(The derivation is also given in Section 3.4 of Barlow et al. (1972).) Let

RE3 , a ( ii-E(pI H) 2)112  and let $ be defined by

( 2-Ul)/1[2 A sin o and (2 3-2-l)//-= A cos 0.

The restriction E E H1  is equivalent to 0 B rr/3. With the stan-

dard normal distribution function and *(x,t) = (x (x-,It)+(x-/t))/O(x),

exp(- -A2)
01(3.1) rr(P) = p[T0 1 >t] = * B (A sin e,t)de

01 2n Tr/6 +P

+ (-A sin O)t(A cos s-qft)

+ (-A sin(Tr/3- B))(A cos(T/3-). -%/).

Bartholomew (1961) took the partial derivative with respect to 0 and

noted that for a fixed value of A, the power function, which is periodic

with period 2iT, is increasing for E E [-5T/6, rr/6] and is decreasing
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for 0 E [rr/6, 7T/5]. Thus, it has a maximum at = rr/6 (the middle of

H1), a minimum at : 7n/6 (the middle of H*) and since it is sym-

metric about S = n/6, it has two equal minima within HI at 5 = 0 and

Srr/3.

The partial derivative of (3.1) with respect to A, evaluated at

0 O, is 0 (G)(r3/2+/t'/(2T)) cos(5-rr/6), which is positive for

s E (-rr/3, 2rr/3) and negative for B E (2ir/3, 5Tr/3). This might lead one

to conjecture that the power of T0 1 is increasing in A : 0 for fixed

E (-n/3, 2nT/3). We have not been able to establish that using (3.1).

However, the results given in this section (Corollary 3.2) imply that it

is increasing in A z 0 for fixed P E (-r/6, r/2). We have also shown

/ that this is the case for k = 3 and p E (-r/3 , 2T/3) using techniques

similar to those employed in Section 2, but because of their special

nature these arguments are not given here. Applying the results of Theorem

3.3 and those concerning the sign of the derivative, at A = 0, of the

power, we know that for 0 E (-rr/2, -T/6) U (2rr/3, 5r/6) the power func-

tion first decreases in A and then approaches 1 as A-->-.

Bartholomew (1961) also considered the case k = 4, but the expres-

sion for the power function is quite complicated. Several values of the

power function for k = 4 are computed there and results like those

obtained for k = 3 are conjectured to hold for k 4, but no further

analysis of the power function is given for k = 4.

Remark. If m -l and v E Rk then the distance from v+oEw(vI H1)

to H is the same as the distance from v to H1.1V

Proof. Using B.1 and B.2 on page 131 of Barlow et al. (1972), it can

I
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be shown that the level sets for EW(v+ E(vi H1) H1 ) are the same as the

level sets for EW(vi H1). Write out the square of the distance from

v• V+OEw(VI H1) to H1 as a sum conditioned on the index being in each

"- level set and the result follows easily.

One interpretation of this Remark is that for any v H1 the collec-

tion of points v+o+W 1); > -13 is a set which is parallel to the

boundary of H1  (cf. Figure 3.1). Theorem 3.1 gives some properties of

the power function of T01 as the parameter ranges over such a collection

of points.

1H

Figure 3.1
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Theorem 3.1. Let v E R. As a function of a E (

T (v + cEW(v H)) is nondecreasing and TOl(v+ cEw(v H*W)) is non-

increasing.

Proof. Write v+a.Ew(vI Hl) v- Ew(vl H1)+ (a+l)Ew(vI Hi), set

V IEw(v HI) Ew(v! HIW) and A = EW(v! H1 ) and note that by (2.1),

;=0. Set S = H' IZk wixi =0 and C= C H lS.
H i= 01 1

Since S LW = HO C 01 $S
"W = H1 . Applying Theorem 2.10, P C(Aw

T >t] is nondecreasing in 6. Thus, nT0l(iO+6p) is non-

decreasing in 0 m 0. For 6 < 0, consider nOl(TT +(-6)(- )), which is

nonincreasing in -6 if -E E CO1 = (Hl .H0w)* = H" S H0. Barlow et al.

(1972, p. 49) show that

(3.2) H1I = tx E Rk: i  wjx. i 0 for i 1,2, " k-1j--1 3

kand j=l wjxj 0).

L-.*W k W
Since (-H1 ) n H0 C H1  P+ (j l w j)e H1  and -I E H*W (D H0,

the first claim is established.

For the second conclusion, write v+a.Ew(v HW) as 0+ (a+l)p with

"0 = Ew(vj H1) and .± EW(vi H* ) and note that (ipO,)W = 0. Let S
"W IW

and C be as in the first part of the proof. Now i E H1 C 01 = (H ns)

=H S H0 and applying Theorem 2.10, Tr (Po+6p) is nonincreasing in

6 > 0. For 6 ! 0, consider nOl(40+(-6)(-p)) and note that -p E -H*W

": -C*W . Thus, applying Theorem 2.10 again, r(+6.) is nonincreasing

for 0 0. The proof is completed.

Theorem 3.1 can also be established using the results in Robertson and

Wright (1982). They considered two relations on Rk defined by x : y

"S

I-.
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provided y-x E H and x << y provided y-x E -H W and proved that if
11

either 61 or p << then TT 01GL) < 01 (p' (i.e., TT is

isotone with respect to both < and <<). For CL : a2, v+a1 Ew(vI H,)

< v+O 2 Ew(vI Hl ) and v+Q 2Ew(vI H ) « v+aIEw(vI H* ) and the results

of Theorem 3.2 follow immediately. However, this approach does not yield

the analogous results for T12.

Corollary 3.2. If p E -H*W C HO, then rTOI(6 i) is nondecreasing in

6c(-c:,w). Furthermore, T01  is unbiased.

Proof. By hypothesis, + vv' with v E -H*W and vE E HO.

1 0

Examining the definition of Tol, it is clear that T(6U) rrOl(6V).

Applying the second conclusion of Theorem 3.1 with v replaced by -v,

we see that rr 0(6v) is nondecreasing in 6 E (-cc).

In the proof of Theorem 3.1, we saw that H c -H*W G H So for
1 1 0

E HI-H O, O I(S ) T ToI(0'). The proof is completed.

Remark. Since H1 C H1  H0 , H l(6&,L) is nondecreasing in 6 E (-:,:)

if E H1 .

The limiting behavior of 7T0 , in the directions considered in Theorem
00

3.1 and Corollary 3.2, will be discussed next. A slight generalization of

Theorem 3.4 of Barlow et al. (1972) will be used to obtain the limits of

k
interest. Following their notation, we define for p. E R

2 2 k w -2 k kE w2 .) w.(P-~± with E wipi/E w.i=l iii=l wii/i=l wi

We first note that the statement of the theorem given there needs some clar-

ification. Consider the following example: Let w = ek, let v E H1

SV

.......................................,~a
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with v- > 0 and let n () nv. Then 2  n2A2 (v) - and
n n

(nji-n)/('n,j-n) = (Vi- )/(v.-v) for 1 g i, j k. However, for odd

n the number of distinct values in E(iAn! H1 ) is 1, i.e., E( ±nI H1 )

is constant, but for n even, E(pnI H1 ) n.v which is not constant

since av-:Jj > 0. Hence, the hypotheses of their Theorem 3.4 may hold, but

.L may not be constant. By making only slight modifications of their

proof, one can prove the following generalization.

Theorem 3.3. Let vo,)nn E Rk with 'in - - 0 as n -- =. If wn = anY

and n n bl/ 2 (-4+- ln ) with a bn -> as n -> , then Ol(P)--

w 0
provided 0 H W S HO, and TT -- 0 if 0 E (HW(DHo)0 where A

denotes the interior of A.

Barlow et al. (1972) applied this result to show that T01  is consis-

tent for H*W ® H0. It also gives the radial limits of the power func-

tion in certain directions. These limits are obtained by setting v = 0

in the following:

Corollary 3.4. Let p,v E Rk. If 6L H1  G H0 , then

lim T01(v+rr ) = 1. If A E (HWDHo) 0, then lim rr =0&,l) 0.

Proof. The result follows from Theorem 3.3 by setting v w, e
2

n (V)/6n a- 1, b :n with 6n .!n  nvV ' n n nn

One can obtain the form of lim.. ® TOl(v+6 ) with p E a(H*WE H0 ),

but such limits play no central role in this work and are tedious to develop,

so they are not included. Next, we study the limits of the power function

along lines parallel to H1  and H*W , that is, we consider1 1

lim _ TrOI(v+aEw(vI H1)) and lim+ TTOI(V+cLEw(v( H*W)). Directions
-0.
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parallel to H1  will be discussed first.

Corollary 3.5. Let v E Rk. If v E HW G H0, then

TToI(v+LEw(vI H1 )) = rrOI(v). If v HW e Ho, then

Iim nOl (v+aEW(v H)) = 1 and lim, TTOlI (v+ aEW(vi H1 )) = 0.

Proof. Using (3.2), we characterize H*W G H as follows:1 0
ii

(3.3) H1W H = (x E Rk: w x. Z!j: l wj) for i 1,2,...,k-l].

Using the minimum lower sets algorithm for computing E(x! H1) (cf. Barlow

et al. (1972, p. 76)), we see that Ew(x( H1) E H if and only if
W 1 0

x E H*W @ H If v E H1W ®H O, then the first conclusion follows from

the fact that TO is invariant under constant shifts. If v f H*W HO01 1 0

then EW(vI H) H0  and since H1 n (H1W (® H0) = H0 , EW(v H1 ) f H1W G H0.

Applying Corollary 3.4 gives the second conclusion.

For the last conclusion, we consider rO1 (v+(- )-Ew(vI H1))). The

desired result follows from Corollary 3.4 by showing that -Ew(vl H1 ) is

in the interior of HTW S H0, which is characterized by making the ine-

qualities in (3.3) strict. Now -Ew(vi H1 ) f H0  and has nonincreasing

coordinates, and for any x E Rk with these two properties,

0i~l w.x./']i  wj is nonincreasing in i and equals 3 for i k.i~ j wj
Furhemoe k-I w k-1

Furthermore, k-l x/ l w > x, for if not x is constant. The

proof is completed.

We now consider limits along lines parallel to H1 If v E H*W
1 1'

then v+cLEW(v i H*W) = (a+l)v and yields radial limits as -o . If

v it H*W, then EW(vi H*W) E 3(H1W 0 H) and l im Trol(v+oLEw(v H W))

is the type of limit discussed after the proof of Corollary 3.4.
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Corollary 3.6. Let v E Rk. If v E H1, then rO (v+mE (vI HW))

-
TT l(v). If v f Hi, then limTO (v+c.E,(v I HW)) =.

Proof. Since EW(vIH 1W) = v-Ew(vi Hi), we see that EW(vI H*W) = 0

if and only if v E H1 . The first conclusion is now clear.

For the second part, assume v f H1 . Using (3.2) and (3.3), we see

that x E H*W 05 -0 =i x-7 E H*W . The proof is completed by applying1 01

Corollary 3.4 provided -Ew (vI H ) H1 W 0 H0 . If -E (v i HW) E H1 W 0 H0 ,

then -Ew(vI H*W) E H*W. But (-H*W) n H = (0, and if EW(vi H*W) - 0,

then v E H.

We now turn our attention to the study of nr1 2, the power function of

T l2 For k = 2 rejecting 91 ! L2 in favor of Pl > 6L2 for large values

of T12 is equivalent to rejecting if Xl-X 2  is large. This test is

known to be unbiased, UMP and to have a power function which is nondecreas-

ing in il-P2 . For k = 3 and w 1 w2 = w3, one can employ the same

techniques used by Bartholomew (1961) to show that

exp(- IA 2  T/

(3.4) nTI 2 (P) = Pp ET12 >t] = si ,t)d

+ (-& sin I-V)I(A cos

+ (-A cos(O+iT/6)-VJt)§(A sin(O+rr/6)),

with A and I defined as before. It is not difficult to show that, for

fixed A, n12 (') is antisymmetric about T = T/6 and 1 = 7rT/6. Based

on Bartholomew's work on TT0l with k = 3 and w1 = w2 = w3, one would

conjecture that rl is, for fixed A, decreasing for 1 E [-5Tr/6, nT/6]

and increasing for 0 E [nr/6, 7rT/6]. We have not established this
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analytically, but have numerically obtained the value of 2' 12/60 for

several values of , A and t. This partial derivative appears to be

negative on (-5rr/6, rr/6) and positive on (rr/6, 7rr/6).

The partial derivative of r.12, with respect to A, evaluated at

A = 0 is -0(,[t)(3t/(2rr)) 1 /2+ I/2)cos(O-Tr/6), which is negative for 0 E

(-TT/3, 2a/3) and positive for 0 E (2TT/3, 5TT/i. As one might expect,

" this behavior is opposite to that of To

For arbitrary k, we apply the results in Section 2 in our study

of rr12 "

Theorem 3.7. Let v E Rk. As a function of a, rr1 2(v+ cEw( I H1))

. is nonincreasing for - < cL< o and r17 2(v+a.Ew(vI H*W)) is nondecreas-

ing for ca.> -1.

Proof. Write v+cLEw(vI Hi) = EW(v[ H W)+ (cL+l)Ew(vI H1) = O+ (+l)
W W 1 W Rk 1with (pOp)W = 0. Set S = H0 = (x E R wxi = 0) and

H 0 1

C = C12  H1W c S. Applying Theorem 2.10, we see that for p EH1 = C12,

P w(AC) = TTI 2 (pO+6 ) is nonincreasing in 6 for 6 > 0. For 6 ' 0,

consider rrl2(4O+(-6)(-k)) which is nondecreasing in -6 since

*W*
- U -H=-C2

For the second conclusion, v+a.Ew(vI HW) EW(vI Hi)+ (a+l)Ew(v! HTW)

"0= (a.+l)" with (4ip)W = 0. Since E H C12, we apply Theorem

2.10 to show that rTl2("O+ &,L) is nondecreasing in 6 z 0. The proof of

. the Theorem is completed.

Comparing Theorems 3.1 and 3.7, we see that Ol(v+ aEw(vl H W)) is

monotone for - < L < , but TTI 2(v+ Ew(v HW)) is only claimed to be

-., ", .-";"5) ,-> ., .--:-- -. '-;';' -',' :,',; ? ';%.. -" -' ,.> ';-.12. ,'- W". , 1- ,'- .',; % '
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monotone for c -1. We consider an example to show that the second con-

clusion of Theorem 3.7 is not valid for -- < .< .
* (Rcal

Example. Let k = 3, w = e3, v (/2/2,-,r2/2,0) E HI. (Recall,H

is characterized in (3.2).) Now v+a.E(vi HI) = (o+l)v, and we will show

that TT2 ((a.+l)v) is not monotone in (-o-I). If it were, then

rT12 (6(-v)) would be monotone for 6 > 0. However, the P corresponding

to -,v is Tr/2 and for such 0, _2/6A[A=O < 0. Hence, the power

decreases for 6 small and positive, but applying Corollary 3.11, we see

that Jim &_=.12(6(-v))

The above example is interesting for several other reasons, also.

(1) For the v chosen, v+a.Ew(v Hi) = (o+l)v and so we see that

r12 (6v) is not monotone for 6 < 0 (see the next corollary).

(2) It shows that rr12  is not antitone with respect to the partial order,

<<, discussed in Robertson and Wright (1982), that is, if 0 r 6 < 6',
then 6(-v) < 6'(-v) but T12(-6v) may be less than T1.(

(3) It shows that T is biased. Along the ray 16(-v): 6 m 0], the
12

power decreases for small, positive 6 and so the level of signifi-

cance is at least (and, in fact, is equal to) r12 (0) = T12 (0(-v))

> 12(6(-v)) for some 6 > 0. We will consider the question of the

unbiasedness of T in more detail later in this section.
12

Corollary 3.8. If p E H1, then n1 2 (k) is nonincreasing for

8 E ( If 4 E H*W G H0 , then T 12 (6&) is nondecreasing for

6 E [0,-).

Proof. Corollary 3.8 follows from Theorem 3.7 just as Corollary 3.2
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follows from Theorem 3.1.

To obtain the limits of TT in the directions considered in Theorem

*3.7 and Corollary 3.8, we establish the analogue of Theorem 3.3 for rr12 "

Theorem 3.9. Let v,e, n E Rk with rln - > 0 as n -> . If

w a v and " -" = bln/2(- +-n ) with anb - as n -k w, thenn n n n n n n n

TTI2n ) -- 1 provided 0 f H1 and TTl2( n) -- 0 if 0 E H 0

Proof. The proof of the first conclusion is very similar to the proof

given in Barlow et al. (1972) for their Theorem 3.4. The LRT of H1  versus

H2 rejects H1 if T12 > t. In this case, T 2/(anbn) converges in prob-

ability to i=l vi(E(e Hl)- )2, which is positive if 9 f H1 . Of course,

t/(anbn) - 0 and the first conclusion is established.

For the second conclusion, TT12 (pR) = P11,w(x: J;Ew(xI Hl)-xl2 > t).

But EW(-I Hl ) = EV(' Hl) where V is a kxk diagonal matrix with
V.. = v. for i = l2,--.,k IIEv(xI H1)_X,12 = , I /2 • ,12
ii = Ev ( a n X I V ,

and if x - 1(p ,W-1) then a11 2x - a1/2 -1 Sn n x lan ,V ). O 12n

POvkx: 1E (x+a np Hl )-x-a n  nV > t]. By the hypotheses of the

theorem, a1 /2  (a b )I/2(04+ ), a b -I, T1 -> 0 and e- hasn n nn n n nSR 0strictly increasing coordinates. Thus, for each x E R there exists ann ,xtherwithsts/2

n(x), with x+a 112n E H1  for all n z n(x). Hence,

- JEv(x+a I 2  I H1) x- aI/ 2n I = 0 for all n t n(x),

and because t > 0, the desired result is established.

* Corollary 3.10. If ni = nyi with yi > 0 for i 1,2,.--,k, then

TI2 is consistent for all kL H1.
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Proof. This result follows from Theorem 3.9 by setting

2 2
V (y /a /ak), = ri 0 bn 1, and a : n.

Corollary 3.11. Let p,,v E Rk. If f HI , then liman 1 2 (v+&,)

= 1, and if i E H , then lim 6  l (v+6i) = o.

Corollary 3.11 follows immediately from Theorem 3.9 and with V = 0,

gives the values of certain radial limits. Because the radial limits of

.rrl2 for " E aH are of interest in our study of the bias of T12, we

need to obtain the value of these limits. For E E H1 , let

1 < <h k be defined by p, .Jl < Lj l+

P" <".<. ..... ' set

. (3.5) C'( ) = x E Rk : x1  X x2 .. . Xj 1,Xj +l< ..- < xj2,

..",xi +1 1 '" .. r x.
" 1 h-1 h

and set G= [,2,",jI], G2 = £Jl+l ',2' ,Gh = (Jhl+ljh}

The G are the level sets of .

Theorem 3.12. Let v E R and p E H . Then,

Sj <][ (3.6) lim 6 _rr 1 I(v+6) = P2w[Ew(Xi C'(.)-xl > t].
Prof. If v+&H, the =vW[EWxIC' ( p)) = Rk0 ko

1Proof. If 4 E H. then C'(p) R , the r.h.s. of (3.6) is zero

and (3.6) follows from Corollary 3.11. Suppose p E 6H1  and consider

"*'.1 Ew(X+V+6ptHI ). For a fixed x, xi +V i +t i - x j- j - . -> 41 as 6-> :

for i E GL, j E G with %' < A. So for each fixed x, there exists a

6(x) with
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max (x+Vi+b i ) < mini (x +Vi+i) maxi (Xi+Vi + i)

iEG1  1 1 1 i EG2  1 1 E 21 x1

<... < miniE (Xi+V i+ pi)

h

for 6 ; 6(x). It follows from the minimum lower sets algorithm (cf. Barlow

et al. (1972, p. 76)) that for i0 E G, miiE Yi j Y max Yi and

that since 6" is constant on the level sets of p, EW(y+ 61)C'(p))

= Ew(y)C'("))+6 4. Since C'(i.) D H1 , Ew(x+v+ 4 C'( ))Ew(x+v+6t HI )

for 6 6 6(x). Hence, for each x, lEw(x+v+ 6I H,)-x--v-6"1W

-- :EW(X I x%))-xlw. Thus

TT (PV + X6: PEw(x+v+ 6j H1 )- x- 12 > t

=P VW[IEw(X I C' (p)) - xIj > t.

The proof is completed.

By taking v = 0 in Theorem 3.12, we obtain the radial limits for

p E 6HI. Corollary 2.6 of Robertson and Wegman shows that the r.h.s. of

(3.6) with v = 0 is a weighted sum of X2 tail probabilities, and the

remark on p. 148 of Barlow et al. (1972) shows that the weighting constants,

i.e., level probabilities, in this case, are convolutions of those for a

total order. We will compute some values for this limit when we study

bias. However, since C' (p) =H 1 , JjEw(x IH) - xj:W z I[Ew(x I C' - x() 4W
and so, P W[IEw(x[ C'))-X!w > t] < Tr 12 (v)

* Next, we study the limits of the power function along lines parallel
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to H1  and H1  Directions parallel to H1  will be discussed first.

If v E H1, then v+ Ew( vi H1) = (c+l)v, which yields a radial limit as

c -> w So we may suppose v H1.

Corollary 3.13. If v f Hl, then

limra T 12(v+aEW(vi H1)) : PvW[1Ew(XI C'(Ew(vI Hi)))-X w > t.

If v E H1W ( H0, then rr 2(v+aEw(v1 H1)) = nTIZ(v), and if v H1
W 0 H0,

then

lira M+-_ 12 (v+a E w(vl Hi)) 1 .

Proof. The first part of the result follows from Theorem 3.12. For
the second part, we recall that EW(vj Hl) E HO  if and only if v E H*W$H

E~vjH~1 0*

So, if v H)) : 2(v) If v H1
W OH 0 ,

1 12 H0  thenl r () l v1 *

then -Ew(vji Hl) f H1  because (-Hl) n H1 = HO . Applying Corollary 3.11

gives the desired conclusion, and the proof is completed.
-p.

Directions parallel to H*W are considered next. We may assume

v H*W and in fact, since T12 is invariant under constant shifts, we
112

may assume v H1  ( H0.

Corollary 3.14. If v E HI, then m 2(v+LEW(vI H')1 TT12(v). If

v f Hl , then Iimo. 1I(v+Ew(vI HW)) 1. If v f H1 U (H*WC®Ho),

then lim TT 12(v+a Ew(vI H*W)) 1
Proof. v 1 1 WV

Proof. If v E HI , then EW(vi H*W) -0 and so the first conclu-

sion is immediate. If v f Hl, or equivalently EW(vI H*W) H1 , then

appealing to Corollary 3.11, lima. nl2(v+LEw(vi H1W) 1 1. The last

TT'.2-.",
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conclusion also follows from Corollary 3.11, if we can show that
-Ew(vE H*W) @ H1. Suppose i = -Ew(vi HW) E HI. Then Fk WjTlj= 0, -nj

is nondecreasing and Ti @ H0  (Ew(vJ H W) E H0 < EW(viJW) = 0 v E HI ).

so, wj~h is nondecreasing in i and equal to zero for i = k. Since

Tik 0, E= 1 wjj < 0 for i = l,2,.-.,k-l. If G, = (1,2,...,jl is

the first level set for EW(vi H1), then Jl < k and E w.7
- J IJl W.=l.

=j=1 wj(Ew(vI Hl)j-V = E j=1 wj( 1=1 we'l/TielI wk)-j=1 wjv = 0. This

contradiction completes the proof.

We have already noted that T12 is biased and we now wish to examine

the amount of bias. In the case k = 3 with w = e3, the level of sig-

2 2 3
nificance is nT12 (0) = P[% >t]/3+P[x)1 >t]/2. Partition R into four

sets depending on the number of level sets in the projection onto H1 .

Specifically, with x* = Ew(xi Hl), let

C * x x*<xx (= HO) c2  x:1I  2 3 x: x 1 2 < : * x 3

C3 = Jx:x*<x=x*) and C4  H ex:x2 -  Hl
C3  1x 2 3T C4=Ix2 ~=x2 x3

We have seen that inf pEC 1 Tr2 (P) = 0 (cf. Corollary 3.11) and that

infEC4 12 (=) = 12(0) (cf. Corollary 3.8). It will be shown (cf. Theorem

3.15) that inf EC2 12(p) = inf T=12( l) P[2 >t]/2, and so by the

continuity of TT12 i H1 ul2 () [ 2-1P[X2>t]. In the case being con-

sidered, the 5% critical value for T is 4.578 and P[24.578]/2

.0162, which gives some idea of the amount of bias. (Larger k will be

discuss, d later.)

L

L"

S.- 'r' * .~S. ~ %j
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Returning to the case of arbitrary k, we partition Rk into M = 2k-l

subsets depending on the level sets of x*. Let C =  x: x<x ...*1 2k
), CO x :v X * < X<..< Ix:* *=x<x*<..< *(= H1 ), C2  1 xI = x 3 x<'<x 3, C3  1x: x1<x2  x3 < 4  k

--., CM = (x: x= ... X* j (= H*W H For x E Ci, let C'(x*) be

defined as in (3.5) and note that C(x*) is the same cone for each x E Ci.

Set C" = Ci(x*) for x E C..
1

Theorem 3.15. With C. and Ci defined as above,
i 1

(3.7) inf ECi TT12(P) : PO,W[lEw(xI C j)-X% > t]-

Proof. We consider CM = H*W H0  first and note that C' H1.
Equation (3.7) follows from Corollary 3.8. Fix i < M and let E C.

Now, as in the proof of the Remark preceding Theorem 3.1, p+ Ew(( 41 H1 )

has the same level sets as P for a. > -1. Applying Theorem 3.7,

TI2(1+a Ew ( H1)) rr1 2(P) for cL a 0 so that

inf EC i rI2() = inf ECilim T12( p+cEW(p2 H,))

= infEC Pw[IEW(x I C )-xjw > t]

by Corollary 3.13.

Let = :( 'l'l,---, ) and W. be the (J -J -)x (J.-J-I

diagonal matrix with diagonal elements w _+,-1 .,w 3, for 9= 1,2,...,h.

Now, IiEw(xI c)-xJ2 = h (xIH1 ,£)-xW 2 which is a sum if inde-

pendent random variables on R . The distribution of the At summand

could be thought of as indexed by (p,W) or (4,,W,). In the latter case,

we can apply (3.7) with i M, to see that

r.9.



* 31

PW [JIEw (xY I Hl.,)-x.l > t] PO.W [Ew (xL Hl I)-XwIi > t] since

EW(PAI Hl,.) is constant. Under both probabilities PPW and POW'

iEw(xi C')-xl2 is a sum of h independent random variables with the eh

summand stochastically larger under P ,W then under P' aI = 1,2,..-,h.

So IjEw(xj C )-xlI1 is stochastically larger under P (cf. Proposition

C.l, p. 485, Marshall and Olkin (1979)). Hence,

infc PW[{IEw(x[ C )-xj 2 > t] p W[IiEw(xI C )-xl 2 > t],

and the reverse inequality follows from the fact that C. is a cone and
1

P is continuous in .

f !Tl(,) :P[x1>t]12.
Corollary 3.16. inf Hl 12(p) 2

Proof. By the continuity of TT12, inf H 12 () = inf K T12W.

Fix i > 1, then there is some j with x. x. for all x E C and
l.j+1 1

C. x: = l < " < .. < x*]. Hence, C' C
3+1 1 <'1 j+1 1 j+1

rx E Rk: x < xj+l], IIEw(xI C')-xllW a IIEW(xI C'.+)-xlW for al x E Rk

and Pow[IEw(x J Ci )-xI 2 > ti PO w[IIEw(XI C'+1)-xIIw > t]. so,

inf T - infl jk PO W[IEw(x I C'.,)-xL 2 > t]. But, Ew(XI Cj.).

x. for i t j,j+l and (Ew(xj Cj'.l)j , Ew(x I Cj+ 1 )j+I) is the projec-

tion of (xE,xj~l) onto {Y E R2 : y1 
- Y23 with norm defined by

11AI: wjy +Wj+ly . Using Corollary 4.2 of Robertson and Wegman (1978)

and the fact that for a total order and any weights P(l,2) = P(2,2) = 1/2,

we see that P,[jjEW(XI ' )-xli > t] P[X 2 > t]1/2. The proof is com-

pleted.
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It is of interest to examine the "amount" of bias in T as k
12

increases. So with t the 5% critical value for TI2 with w = ek and

k = 3,4,5,6, we computed the infimum in Corollary 3.16. As was noted

before, for k = 3 the infimum is .01620, for k = 4 it is .00648,

for k = 5 it is .00281 and for k = 6 it is .00128. (The critical

values are taken from Robertson and Wegman (1978)). The infimum is approx-

• .. imated by T12(4) with i at a large distance from H0, but close to H1 .

For practical purposes it is also of interest to compute "12 at 4 near

H1 , but at a "reasonable" distance from H We first consider k 3
0*

and w = e3, for in this case the powers can be obtained numerically.

Because of the proof of Corollary 3.16, we will compute rr12 (v +aE(vj H1 ))
42-...

.- for various a and v chosen so that E(vj H1 ) has one level set with

two elements and the other has one element. Table 1 gives the values of

T12 (Vi+a.E(V i H1 )) for vi = i/A(ii) with 41 = (2,1,2) and

" (1.5,1,2) and t 4.578, the 5% critical value.

We observe that the bias of T12, even for k = 3, is large enough

to be of practical significance. For k = 5, w : e5, t = 7.665 (the 5%

critical value of TI2) and v - /A( ) with . = (3,1,3,4,5),

1 12(v+oE(vI H1 )) are estimated by Monte Carlo techniques with 10,000

replications. These values are given in Table 2. We notice that the bias

is even more pronounced for k : 5.

0,

'0<

.9 . •*..**.b°**.
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TABLE 1. Values of r12 (v i+E(v. tH)) with k = 3, w = e3 , t = 4.578

and vi =

l = (2,1,2) 2= (1.5,1,2)

Ca vI+o.E(v 1, H1 ) A rr12  v 2 +cE(v 2 1 H1 ) A 12

-l (.6124,-6124,0) .866 .1448 (.3536,-.3536,0) .500 .0880

0 (2.449,1.225,2.449) 1.000 .1338 (2.121,1.414,2.828) 1.000 .0481

1 (4.287,3.062,4.899) 1.323 .0770 (3.889,3.182,5.657) 1.803 .0272

2 (6.124,4.899,7.348) 1.732 .0466 (5.657,4.950,8.485) 2.646 .0227

5 (11.64,10.41,14.70) 3.123 .0270 (10.96,10.25,16.97) 5.220 .0192

10 (20.82,19.60,26.94) 5.568 .0213 (19.80,19.09,31.11) 9.539 .0178

TABLE 2. Values of Tl12 (v+aE(vj H,)) with k 5, w = e5 , t 7.665

and v =

= (3,1,3,4,5)

SA 12

-1 (.3371,-3371,0,0,0) .48 .0699

0 (1.011,.3371,1.011,1.348,1.686) 1.00 .0334

1 (1.686,1.011,2.023,2.700,3.371) 1.82 .0204

2 (2.360,1.686,3.034,4.045,5.057) 2.68 .0151

5 (4.384,3.708,6.068,8.090,10.11) 5.30 .0108

10 (7.753,7.079,11.12,14.83,18.54) 9.68 .0101

6

p_*.
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4. CONTRAST TESTS. Suppose one is to test H0  versus H1-H0 with a

contrast test which rejects for large values of Tc  =k lwith

2w. = ni/ui and C t 0. Assuming the weights, wi, are equal, Abelson and

Tukey (1963) found that the optimal contrast coefficients are

ciO) C((i-)(k-i+l)) 1/2  (i(k-i)) 1 2 , 1 . i k. Schaafsma and Smid

(1966) generalized their work to the case of unequal weights and obtained

(4.1) w c 0 ) = (s (s -s i 1/2_ (s.(s 1s))1/2
1 i-l k i-l 1 -

with s = Z wj and s .

We note that k= w c() = 0 and so the distribution of T (o) is the

same for all E HO.

One could also consider testing H1  versus H2  by rejecting for

large values of such a statistic. Of course the contrast coefficients for

testing Hl versus H2 would be different than those chosen for testing

H0  versus H -H . The power function for the test (whether testing H0

versus HI-H 0  or H1  versus H2) is given by

(4.2) 17( ) 1 -1 (t-(c, )W)/c W).

Since the distribution of Tc may not be the same for all 6 E Hl, the

level of significance is supH c) If there is a p E H1  with

(cP)W > 0, then using the fact that H1  is a cone, we see that this

supremum is 1. Thus, we restrict attention to c with (p,c)W : 0 for
all p E Hl . or equivalently c E H*w For such c, the level of sig-

nificance is suP4EHl[1- l ((t-(c,p)W)/IcIJw)l = 1- (t/jCIcw). Thus, if zp

satisfies t(zp) = 1-p. then t = pjC W  gives a test of size p.

-. p .. 9'JP~%
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We now consider different optimality criteria and the corresponding c.

Fix F H1  and consider the contrast test which maximizes the power at ,

that is, c maximizes (c,4)W/Jjcj W over all c E H1 -0]. Since F± f HI ,

there eixsts a j with pj > j+l. Consider c with ci 
= 0 for

i / j,j+l and c. = -cj 1, then p(c,.L) > 0. If we agree that
Sj+l

(O,4)W/J OiW = 0, then the maximization problem is unchanged if H1
W- t03

- is replaced by H, . Since p is fixed and c = 0 for c E H, the

above is equivalent to

(4.3) maximize p(c, L) : l  with c E H1

(set p(O,IA) = 0). Clearly, H 0 HO, which is characterized in (3.3),

is a closed convex cone containing the constant functions. Furthermore, c

solves maximize p(c,p) over c E H*W Z H0  if and only if c-ZC solves
1 0

*(4.3). Applying (ii) of Corollary E, p. 320 of Barlow et al. (1972),

EW(,I HW ( HO ) maximizes p(c,P) for c E HW 0 H. Using (2.1) it is

W *W
easily shown that EW(41 H*WG H E E(P I H)+-. Since

.k wi(EwH* W+# )/:I wi  , EW(pI HW) solves (4.3). The power
_ * W  kW

function of the resulting test is 1- (zp-(Ew( i Hl W' /1IEw(I H'W)IW) '

which by (2.2) can be written as 1-(Zp- 1Ew( H1W)lIW). We have proved:

Theorem 4.1. Let H1. The contrast test with maximum power at

- is determined by c = E( H1 . The power function is

T W( = 1 - (zp- Ew HI, W)IW).

Since the optimum c depends on the unknown p, one could estimate

c using Ew(XI HW) :X-Ew(XI H1 ). However, i=l wi (Xi- Ew(XI Hl)i)Xi

E ,-2 H T (cf. (2.1)). Thus, T 2  is an adaptive contrast:'2 W 1 X-E X [ H )W : 1T 2 .1,

test.
0..'
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Next, we consider the criterion used by Abelson and Tukey (1963), that

is, we fix 6 > 0 and seek contrast coefficients which maximize the mini-

mum power over points at distance 6 from the null hypothesis, H1. So,

we wish to solve

sup *WV inf ,1L E [I (Z (c,P)W/llcllw) I
cEHl I -{03 F: _w(P HI 11W:_6  - (p

However, we will show that for c E H1 - (o] and 6 > 0,

inf _E( H)!W6 Tr( ) = 0 so that this criterion is not useful.

WU

Lemma 4.2. If c E H1l (0, 6 > 0 and k > 2, then there exists

a 4 f H1  with lip- Ew(p HI)lIW : 6 and (c,Ew(p HI))W < 0.

-'" 1 -w1 -1 -w3

Proof. Let v1 = (w1 ,-w2 ,0,**,0), v2 = (0,w2 ,-w ,O,',

...',Vkl = (O,..',O,w k3l,-Wk. It is easy to show that

HW 1 ka i a 0]. Furthermore, (vi,Ew(pi H1 ))W 0

for each i and p. Let c = av1 + ...+ak vk_. If a > 0,

1 < j < k-1, then let p be (1,2,...,k) with the j+l st and j+2nd

coordinates interchanged. So, EW(pl H1 )i  i for i j+l,j+2 and

Ew( i Hi ((j+2)Wl (+l)w /(W++w ) for i = j+l,j+2. Thus,H). ( j+ + j+2 j+2

aj(vjEw(p4 HI ) ) W  aj(j-Ew(pi H j )  
< 0 and (C,Ew(41 HI )) W < 0. If

a1 = .... ak-2 0 0, and akl > 0 (recall, c 0), then let

= (2,1,'--,k). It is easy to show that ak-l(vk-l,EW(p HI))W< 0.

Thus, in either case, one can find H1  with (c,Ew (I H1))W < 0.

Multiplying by the appropriate positive constant, we obtain p f H with

(c,Ew(pI H1 ))W < 0 and l1-Ew(pj Hl)jj W  6. The proof is completed.

J.

-,a
4'm

m

" 4.'



S'."

- 37

" For a -, set pa = +aEw(p HI) and note that by the remark pre-

ceding Theorem 3.1, I.a-Ew( aI Hl )I1W II.l-Ew(pI Hl ) ijW = 6 0> . Thus,

f H,, the distance from pa to H is 6 and

lima_.j(Cga)W = (c,p)W + lima a(C•Ew( ( HI))W =_

Therefore, for each c E H*W-OJ and 6 > 0,

P: IfIpEw(plHl )lW=6 TTC ( .) 0.

-. "We must consider other criteria.

-i"- Following Schaafsma and Smid (1966), we consider the contrast that mini-

mizes the maximum "shortcoming" among all contrast tests. Recall that for a

given L H1, the contrast test with maximum power at p. is obtained by

taking c : .-Ew(4 1 H1) and has power 1- (z P-Ib.±-Ew( (p I Hl)[1w). So, for

any contrast test its shortcoming at u is

(4.4) (Zp- (C1)W/1i1 W) - §(Zp - -Ew (p I HI) 1W).

If there is no constraint on k other than p H1, we see from the pre-

ceding analysis that the supremum is at least as large as 1- (z -6) for
p

each 6 > 0, and so the maximum shortcoming over all . E H1  is 1. Even0

if p is constrained so that ijj-Ew (4 H1 )IW = 6 > 0, the maximum short-

coming is 1- (z 6) which does not depend on c. Neither of these cri-

teria are useful.

The vector of means 4+aEw(k.± H1) remains at a fixed distance from

H1, but it is moving away from H as a increases. So, we consider the
0

contrast test which maximizes the minimum power over all f H1 with

= = 6 > 0. Let a, (w l+w:l1l)I/2 for i l,2,.-,k-l,

'%,
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Slet d= 0, di  a. for i = 2,--.,k, let d d'-a' and let
~c(1) :-d .

(1)

Theorem 4.3. Let 6 > 0. The contrast test which has coefficients

cM and rejects for large values of T( 1 ) maximizes the minimum power

over all . H1  with A(4) = 6. Furthermore, such contrast coefficients

are unique up to a positive multiplier.

-Before the proof of the theorem is given, we establish

Lemma 4.4. If ,v E H1 , then -, W 0.

-' Proof. - E HI and v-v E H and the conclusion is immediate.

, Proof of Theorem 4.3. We wish to find c which yields sup
cEH* -fo

inf HIA(l ) [I-6 (p-(c,U)W/I[cIJw)], or since Z : 0, equivalently,

!" (4.5) sup .]l infpc,)

If -c f H1 , then consider 4 = -c. Since p(c,-c) = -1, we may omit

such c from the supremum. Because H*W n (-H (-H n : O,

(4.5) is equivalent to

(4.6) sup c infiH p(c,I) : -infdEHl , sup p(d,p)

We will solve for d and remember that c -d. Because of the continuity

of p(d,-), the supremum in the r.h.s. could also be taken over L f H UH .1 U 0 '

However, if p E aHl1, then applying Lemma 4.4, p(d,4) - 0 and so that

supremum could be restricted to I I H U (H0 0 H W) (for p(d,) 0
o'0

S:£:
.-. . .. , .. : .. ; ; V. ; ;..;..* . -:1- * *. *; . . . ... -: C .; .. i.
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for E H,. So, we seek d which solves

(4.7) infdEHl}0,5=O *W) p(d,p).-10,a~ sp HOU (Ho GHTW

Furthermore, if j f H1 W D H0, then EW(41 HI) E H0  and so A(Ew( H1 ))
k .'- ,_ k

> 0. Applying (2.3) and the fact that i=w kE( H i=1 wi i , we

see that 0 < L(Ew(4 Hi)) = 1IEw(pI Hl)- J1W = 1IEw(p- j HI)WI W -jit-ilW A(p).

For fixed d E H -JOJ with 0 0, p(d,kj) = (Idllw !,4-, W ). I(d,p)W
-4.,

. (1jdj1w lp- Ilw)-m(d,Ew( (pi Hi))W , which is nonnegative by Lemma 4.4. So

0 p(d,4) < p(d,Ew(pi Hl)) for pi H1  hO. Therefore, d solves

infd W[0, up u 0 , P(dEw(p4 H1))

= infdEHlO0,6=0 suppEbHl-Ho p(dq).

k
The boundary of H1  is the union of A1  (x E Rk  x 2 'x 3 ' -xkJ,

A2  [x E Rk x - x2 =x3 < .'Xk. .-Ak_ . [x ERRk: Xl!.5 XklXk.

Because of the convention p(d,O) = 0, we seek d that solves

(4.8) infdHO,-O max, max E p(dp).

Each Ai  is a closed, convex cone in R containing the constant func-

tions and p(d,p) > 0 for any p E A. So, by Corollary E, p. 320 of

Barlow et al. (1972), maxEAi p(d,") p(d,Ew(d Ai)). It is easy to

show that d* ** with d d for j i,i+l and

(wid+wi di+)/(wi+wi+l) for j = i,i+l, is the point in Ai

closest to d E H1 , i.e., d* = Ew(dt Ai). Also

v,

.'0°-

:,,€-
. . . -'.S... -," '' .'' ' ' ,' ' ,' :' ' ' ' , " ', ,., ' , ' ."."". . . ' '. % ',4',{ ' , '"-,",- ",,
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P(d,Ew(dA i )) IlEw(dI Ai)IW/IldiW. So d solves (4.8) if and only if

d/idj W solves

mindEHl lldllW~ l J=0 maxl ik-J IIEw(d I A i )I W-
_V 2 a2

However, -dW  IJEw(dI Ai )IIw wiwi. (d -di/ +w) / 22

So, we wish to solve

(4.9) max lIl'"l -l= min1 1 d +1 - i)2/2(49) madEH1 ,i i~dw- ,J:0 l~i~k-1 +l-di

Let dI be defined as in the paragraph before the statement of the theorem

and let da = ad1 . Note that da E HI ,  a 0 and !idaJIW a lidluw>O

for all a > 0. So, choose a so that IdaIiW = 1.

We now show that the d chosen above is the unique solution to (4.9),
a

which implies that -d a is the unique, up to a positive multiplier, set of

contrast coefficients which is being sought. Note that if da = (dal da2 ,

..,dk), then (d2 - da)2a = a2  for i = 1,2,-.-,k-l. Supposedak ),te dai+l -dai) 1
2 2 2

z E H1 with 0 : 0, I~zjw = 1 and min1i!k-I(zi+l-z i) /a. > a . Then,

(zi+ l -z i ) (dai+l-dai) or zi+ -d ai+l > zi-da  for i = 1,2,"-,k-l.
1

Hence, z-da E HI and applying Lemma 4.4,

1 = 13!'2 lid aL2 + hIZ-daIiW2 + 2(d Z-da)W l+z-da! 2

;- l;wai a a Wa W

So, lZ-d2 : 0 or z = da . The proof is completed.

We conclude this section with some remarks concerning the power func-

tions of such contrast tests, that is, tests which reject for large values

of Tc
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kTheorem 4.5. Let ,v E . If (c,v)W 0, then rc (P+av) TT C

for all a E(--,-). If (c,v)W > 0 ((c,v)W < 0), then rr c(+ av) is

increasing (decreasing) in a with lim _ a (" + Qv) = 1 (0) and

lir T (1+ Cv) = 0 (1).
C-*--~ C

Proof. The result follows immediately from (4.2) since (c,k.+cov)W

.+ ((c'V)w.

In the next result the regions of consistency are determined for such

contrast tests.

Theorem 4.6. Let p,y E Rk with yi > 0 for i 1,2,...,k. Let

w =n y and fix the level of the contrast test at p E (0,1) for all n.

If (c,p,) > 0 ((c,P) < 0), then TTC(±) -- 1 (0) as n -. . If
Y Y C.

(c,P)y = 0, then nc ( ) = p for all n.

Proof. Since (c,p)Wn /j1CW =n 1/2(c,g) y/1c4Y , the desired conclusion
n n " ~

follows from (4.2).

It is of interest to compare the regions of consistency for T0 1 and

T( in testing H0  versus H1-HO. We first show that c(0 ) E HO. Let

xi = si/sk for i = 0,l,..-,k and note that (cf. (4.1))

ciO) (g(xi l )-g(x i ))/ (xi-xi_l ) where g(x) = (x(l-x)) /2. The desired

conclusion follows from the strict concavity of g on [0,1]. Applying

Theorem 4.6 the contrast test is consistent for pi E A kc' 0 )

:: (c(O),F)w > 0), and from Corollary 3.2, thi4 is true for T0 1 for

1H W G H If P = PI + " with p" E H1  and i' E HO, then

(c(O) W : (c(OT'ul)W 0 0. So, A+(c (O )) c (H*W®Ho)c. Drawing
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H *W (0) +(0)
H1' H, C and A+(c ( ) for k 3 in the plane i 0 gives one

an idea of the size of (H*W SH )C- A( (0)

In testing H1 versus H2, TC(1 ) is consistent for EA E (c

and TIH2wis consistent for HI. Since -c E H1  and = 0,

I) E H,. If u E H1 , then (c(I),iW) < 0 and p E (A+(c(1)))c. Hence,

A( cH. Again one can obtain an idea of the size of H A+(c(I))

by drawing the figure for k 3.

4-

.4

S.

4-

St
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5. COMMENTS. We begin this section with a few remarks about the situa-

tion in which the variances are unknown. Suppose Xij are independent

2
l(wi-a ) variables for j = 1,2,...,n i and i = 1,2,...,k with

(I l2...,k) and a2  unknown. For the contrast tests, let w. = n.

21
and assume that c does not depend on 2. Following the optimal procedureni

A2 k n1  2 kfor k = 2, define a2 = 7 =(Xi.-Xi) /(N-k) with N = i ni" In
i 1 J=l ij if

testing H versus HI-H O , we assume w c 0, and so if one
00~ ii

rejects for large T' = k wiciYi/&, then the lOOp% critical value is
c i j

tN-k,pcIW where F(tNk,p) = 1-p with F the distribution function for

a Students t variable with N-k degrees of freedom. In testing H1

versus H2, we assume c E H1 , and so H0  is least favorable within HI .

Hence, the lOp% critical value is also tN kpIlcLW. Let f(y) be the

density of Y &/o. Conditioning on YN which is independent of
n

S(XlX 2 ,--,X-k), we see that the modified contrast test has power func-

tion

p.D

(5.1) T'() : l-,p( (c,)W/(I'c[w))f(y)dy.
c o §YtN-.k,p ' 1

Hence, Theorem 4.5, which gives the radial monotonicity and radial limits

of lrc , is also valid for rr' . Furthermore, if ni = nyi with yi > 0
k i

for i 1,2,-..,k, then as n k= n i: nicilc W = /Fn E k=c,

-- ± depending on whether (c,p) > 0 or (c,L) < 0. Also

(6/)tN.k p -- Z So as n -- , TT'() -- 1 (0) as n -- provided

S(c,0)> ((cL) < 0), and TT' () -- p if (c,p)y = 0. The radial
y y cY

behavior and the regions of consistency for these modified contrast tests

are like those for the contrast tests.

The LRT for H versus HIH rejects for large values of
010

.-
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kT 2 2S0 l : / il nia-IL ) / ijI(X -  : =2To,/ST

where ST is the total sum of squares (cf. Barlow et al. (1972), p. 121)).

Equivalently, one could reject for large values of LO, (N-k)SoI/(l-SoI).
- 2 k n(i)2+ k

But S + E k I 2 iX Apply-k k
ing (2.1) and the fact that = wiEw(X C)i = i ix we see that the

:]k 2 ,k n i - 2
last sum is zero. Hence, Ll= (N-k) i=l n2i(i-F / i j 1(X)ij--i We

now wish to determine the region of consistency for L01. Suppose that
k- n.

ni.= nyi with y. > 0. Noting that _ .jl(Xi--i) /(N-

k n .
-Z i ZjI(X..-X) 2/(N-k)+Zi l ni(7i- i) /(N-k), we see that this expres-

sion converges almost surely to a2 + lip- Ey(pi H)1 12/2 = Under H0y il Yi" Une 0

k2
(we may assume without loss of generality that p = 0), i n(i
.t2k k k )2

= l Yi(Ey(YJ Hl)i-Y. 1 YjYj/Fi=I Yj where Yl'Y22'9 Yk are inde-

pendent variables with Yi - T-(O',Yll). Hence, the lOOp% critical value

for L01  converges to the lOOp% critical value for T with weights yi.
*01

Now suppose j. E HI G H0. Examining the proof given in Barlow et al.

(1972) for their Theorem 3.4, we see that Fik=l ni(pi " A))2  a.s. and,k n . - 1 2 + { l - y u I l I y Z : i

as we have seen, Tk i "1  .jlNXijFa)2/(Njk)-E (ps. I k1
i= =l 1 (vjT\ (NY 1Y =

Hence, L is consistent for such p. Furthermore, the argument given in
k=k 2 a.s.the second part of their proof shows that Z i41 n i( i- ) - 0 pro-

vided E (H*W G1 HO) This is the same limiting behavior as was observed

for T

It is interesting to note that

Tol
Lo-01 Q+ Tl2

where Q is independent of T and T12. Recall from the introduction

* a* t *W S *,P~* . . C
- - ~ *' ~ TJAL~ XW~ iC~VW.V~AV,
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that T is isotonic and Tl2  is antitonic with respect to <. It fol-

lows that for fixed q, Plq+T1 2 > tI is isotonic with respect to <

and by conditioning that P [Lo1 > t] is isotonic with respect to < .

Thus, if p E H then P6[L > t] is nondecreasing for 6 E (-:,o)

and P +6E(H)[Lo1 > t] is nondecreasing for 6 E (- ,") for any

-.. E Rk. What about directions like p+6Ew(4i Hl) or for p. E (-H) U HO?

It is easy to see that for fixed q > 0, x E Rk ______C___W2l tq. q+ JE w(xICI12) 112

is not convex (take q t = 1 and k = 3) so that the techniques of Sec-

* tion 3 will not apply.

The LRT for H versus H rejects for large values of
1 2

S12 = = I ni(Xi-i) 2/[(N-k)& 2 +zi= n i(XI- ) 2

(cf. Robertson and Wegman (1978)), or equivalently for large values of

-- k -p 2 a 2 2L T_
12 L 121(I-S]2) 7i= 1 ni  12

If we again denote the density of Y = /a, by f(y), then, for a fixed

critical value, t > 0, the power function of L is given by
"0

= f > [fy]f(y)dy.

Hence, Theorem 3.7, Corollary 3.8 and Corollary 2.11 are also valid for

Tr'n2. It is not difficult to show that S12 is consistent for all 4 Hi,

as was the case for Tl 2 .

Because of the similarities we have observed between the case of

variances known and the case of variances unknown, one might conjecture
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that the monotonicity properties of L are like those of TOI However,

we have seen that some of the results do not follow from simple condition-

ing arguments as in the case of Tl2 and Ll2 It would be of interest to

know what techniques could be applied in the study of the monotonicity of

the power function of Lol.

In deriving the optimal contrast test for H versus H the vector

d I was obtained. This vector, which in the case of equal weights has uni-

form increments (i.e., d1 ,i+l-dl1 i is constant), is in the center of the

cone H1. In fact, d1  makes equal angles with the faces of H . On the

other hand, the optimal conrast test of H0  versus HI-H 0  is based on

C(o) , which is another center of Hl. The vector c(o) makes equal

angles with the edges of H1. Bartholomew (1961) conjectured that, for

a fixed value of A, the power of T01  is largest at dI. It is of

interest to compare the power of T at both of the "centers" mentioned

above. Fixing their lengths to be 1 and k = 5, d1 = (-.6325,-.3162,0,

.3162,.6324) and c(0) = (-.6899,-.1551,0,.1551,.6899). For w = e5 ,

these powers were estimated by a Monte Carlo experiment with 9,999 repli-

cations. The estimates are rol (dl) = .2374 and ro 1(c(o)) = .2339,

which tends to confirm Bartholomew's conjecture. What analytic tools are

needed to establish this conjecture?

-. 4, ' , W '\\ %
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APPENDIX. The appendix contains the proofs that were omitted in Sections

2 and 3.

Proof of (2.4). It follows immediately from the definition of a dual

cone that C c (C*)*. The other containment depends on the fact that C

is closed. Suppose x E (C*)* and x f C. Since C is closed,

SIx-E(xj C) j > 0. But, x E (C*)* and x-E(xj C) E C* imply that

0 (x,x-E(x C)) = L x-E(x I C)II 2 + (E(xI C),x-E(x I C)) = ilx-E(x I C)112 . This

contradiction shows that (C*)* c C.

Proof of Lemma 2.2. We first note that if E(x-p±0 I S ) = bp, then

E(x-I C )= where b = bvO, and E(x- O lI S ) E(x S). Hence,

E(x-pol C ):= E(x C ) and so we establish (2.5) with O= 0.

We consider the two cases i E C and -4. E C* separately. Suppose

p E C and 0 : b ; 2. Using (2.3) followed by Lemma 2.1 and (2.3) again,

we see that

liE(x-bE(xi C) I C)112 = ix-bE(x I C )2_ [IE(x-bE(x IC C) 1*)2

< jjx-bE(xt C )I2_ IIE(xt C*)112

1 l~2 + b(b-2)[IE(x I C )112 - E(x I C*)1 2

114 JJE(x I C*)j 2  
= LjE(x C)I12.

If E C*, then -bE(x[ C ) E C* for all b 0 0. Thus, by Lemma 2.1

and (2.4),

[iE(x-bE(x[ C )[C)tI !r JJE(x I C)II

for all b > 0.
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Proof of Lemma 2.3. Because of (2.3), IE(x+yf C)Ij can be written as

(A.) IIE(E(x I C)+E(x I C*)+ E(y[ C)+ E(yI C*) I C)j

=E(E(x [ C)+ E(yI C)+ z[ C)[

where z = E(xI C*)+E(yr C*) E C*. Applying (2.4) and Lemma 2.1, (A.1) is

bounded above by IIE(E(xI C)+ E(y[ C) [C)JI = IIE(x [C)+ E(y IC)II. The second

inequality in Lemma 2.3 follows from the triangular inequality for norms.

Proof of Lemma 2.4. The first conclusion of part (a) follows from the

third condition in (2.1) and the facts that -v E S whenever v E S and

S c C. For the second conclusion in part (a), we check the three conditions

in (2.1). Clearly, E(xI C)-v E C and (x-v-(E(xl C)-v),E(xi C)-v)

= (x-E(xI C),E(xI C))- (x-E(xI C),v), where the first term on the r.h.s

is zero by (2.1) and the second term is zero because of the first part of

(a).

For part (b), we assume S is a closed subspace contained in C and

show that E(xJ S) satisfies the three conditions that characterize the

projection of E(xI C) onto S. Of course, E(xI S) E S,

(E(xI C)-E(x[ S),E(xl S)) = (x-E(xI S),E(xI S))-(x-E(xI C),E(x[ S)) = 0
(recall, E(x [ S),-E(x [ S) E S c C), and for u E S, (E(x I C)-E(xf S),u)

(x-E(xI S),u)-(x-E(x[ C),u) = 0 (again, u,-u E S cC).

We prove part (d) before (c). So, we assume that C c S and again

verify the conditions in (2.1). By definition, E(x C) E C, and because

x-E(x S) = E(xI S"), (E(xI S)-E(x[ C),E(xI C)) = (x-E(xI C),E(xI C))

- (x-E(x IS),E(x [ C)) = -(E(x S'),E(x C)) = 0 since C c S. For y E C,

(E(xj S)-E(xI C),y) = (x-E(xI C),y)- (E(xI S'),y) = (x-E(xI C),y) : 0.

'.Qm
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For part (c), assume that S is a closed subspace contained in C.

By part (a), E(xt C)-E(xt S) = E(x-E(x S) j C) = E(E(x! S') C). By part

(a), for v E S, (E(E(xj S')j C),v) = (E(xI S),v) = 0 and so,

E(E(xI S') C) E C Fi S'. Hence, E(E(x I SL) C) = E(E(x S') C nl S1 ) and

the latter is E(xj C fl S") by part (d).

Proof of Lemma 2.9. For the proof of the first conclusion, we note

that x E(FC)*I - (x,y) !; 0 for all y E FC <; (x,Fz) - 0 for all

z E C * (F x,z)w t 0 for all z E C 4=* x E FC*

For the second conclusion, we show that FEw(xi C) satisfies the three

conditions that characterize E(FxE FC) (cf. (2.1)). Let y Ew(XI C).

Of course, Fy E FC, (Fx-Fy,Fy) = (x-y,y)W = 0. and for z E FC,

(Fx-Fy,z) = (x-y,F z)W : 0 since F' z E C.

I d- -it



50

REFERENCES

Abelson, R.P. and Tukey, J•W. (1963). Efficient utilization of nonnumeric

information in quantitative analysis: general theory and the case of

simple order. Ann. Math. Statist. 34, 1347-1369.

Anderson, T.W. (1955). The integral of a symmetric unimodal function over

a symmetric convex set and some probability inequalities. Proc. Amer.

Math. Soc. 6, 170-176.

Barlow, R.E., Bartholomew, D.J., Bremner, J.M. and Brunk, H.D. (1972).

Statistical Inference Under Order Restrictions. Wiley, New York.

Bartholomew, D.J. (1959). A test for homogeneity for order alternatives,

I, II. Biometrika 46, 36-48, 328-335.

Bartholomew, D.J. (1961). A test for homogeneity of means under restricted

alternatives (with discussion). J.'Roy. Statist. Soc. B18, 234-239.

Bartholomew, D.J. (1983). Isotonic inference, Encyclopedia of Statistical

Sciences. John Wiley and Sons.

Dykstra, Richard L. and Robertson, Tim. On testing monotone tendencies.

J. Amer. Statist. Assoc. 78, 342-350.

Lee, Chu-In Charles (1983). Statistical inference in normal model under

linear constraints, Memorial University of Newfoundland Technical

Report.

Lehmann, E.L. (1959). Testing Statistical Hypotheses. Wiley, New York.

Pillers, Carolyn, Robertson, Tim and Wright, F.T. (1984). A Fortran pro-

gram for the level probabilities of order restricted inference.

J. Roy. Statist. Soc. C33,

Robertson, Tim (1978). Testing for and against an order restriction on

multinomial parameters. J. Amer. Statist. Assoc. 73, 197-202.

Robertson, Tim and Wegman, E.J. (1978). Likelihood ratio tests for order

restrictions in exponential families. Ann. Statist. 6, 485-505.

A6,



i - 51

Robertson, Tim and Wright, F.T. (1982). On measuring the conformity of a

parameter set to a trend, with applications. Ann. Statist. 10,

1234-1 245.

, -" Robertson, Tim and Wright, F.T. (1983). On approximation of the level

probabilities and associated distributions in order restricted infer-

ence. Biometrika 70, 597-606.

Robertson, Tim (1984). Monotone relationships, Encyclopedia of Statistical

Sciences. John Wiley and Sons.

Schaafsma, W. and Smid, L.J. (1966). Most stringent somewhere most power-

ful tests against alternatives restricted by a number of linear

inequalities. Ann. Math. Statist. 37, 1161-1172.

.

0



SECURITY CLASSIFICATION OF THIS PAGE (Woh.m Date Entered)
" REA^D rNSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLTN FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (aid Subtlell) S. TYPE OF REPORT A PERIOD COVERED

On the Power Functions of Test Statistics
in Order Restricted Inference TechnicalReport

S. PERFORMING ORG. REPORT NUMBER

., 7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(@)

Hari Mukerjee Tim Robertson F.T. Wright N00014-80-0321
Statistics Statistics Math & Statistirs
nav.s 0 Calif. Univ. of Iowa Univ. of Missouti N00014-80-0322
* isO AC a Iowa C;' TL A En , NO

S. PERFORMING ORGANIZATION NAME Ait ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA A WORK UNIT NUMBERS

Office of Naval Research

Statistics and Probability Program-Code 436
Arlinaton, Virgin'i

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

October, 1984
13. NUMBER OF PAGES

. 51
14. MONITORING AGENCY NAME I ADORESS(( dillernt Im Cetrollind Office) 1S. SECURITY CLASS. (of thie topoi)

Unclassified

&S. DECLASSIFICATION/DOWNGRAOING
SCHEDULE

1S. OISTRIBUTION STATEMENT (of tlh Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (of the abetract mntered In Block 20. If dilfferet from Report)

.:-..-

IS. SUPPLEMENTARY NOTES

* -.

IS. KEY WORDS (Continue on er*,e@ side II neceseary ad Identify by block number)

" Order restricted tests, isotonic inference, power, likelihood ratio
tests, contrast tests.

20 A*'S1 RACT (Cn,.. ,, ,orere id. It n.ca.sy and idontif by block -mmber)

* We study the power functions of both the likelihood ratio and con-
trast statistics for detecting a totally ordered trend in a collection of

means of normal populations. Monotonicity properties are found and both
radial limits and limits along lines parallel to the cone of points satis-
fying the trend are examined. An optimal contrast test for testing a trend
as a null hypothesis is derived.

DO .N 1473 EDITION OF I NOV 61 IS oSOLETE
• ,p ,#$,/N 0102- LF- 014. 6601

.pa 1 - 60SECURITY CLASSIFICATION OF TNIS PAGE (When Data lnIoa

'r
-%°p4. " ",'"i"" 2":¢ ... ''":"""""" , . .;',""." '". ' .. '. . . ' r ,": ' .v' ' '.' '/,''- ';'''. -:



T 

I

II

cilie

INI
It t

Al@1j

*$ X

* 74fI


